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Magnetic resonance spectroscopy (MRS) has been shown to be a
potentially important medical diagnostic tool. The success of MRS
depends on the quantitative data analysis, i.e., the interpretation of
the signal in terms of relevant physical parameters, such as frequen-
cies, decay constants, and amplitudes. A variety of time–domain
algorithms to extract parameters have been developed. On the one
hand, there are so-called blackbox methods. Minimal user interac-
tion and limited incorporation of prior knowledge are inherent to
this type of method. On the other hand, interactive methods exist
that are iterative, require user involvement, and allow inclusion of
prior knowledge. We focus on blackbox methods. The computa-
tionally most intensive part of these blackbox methods is the com-
putation of the singular value decomposition (SVD) of a Hankel
matrix. Our goal is to reduce the needed computational time with-
out affecting the accuracy of the parameters of interest. To this
end, algorithms based on the Lanczos method are suitable because
the main computation at each step, a matrix–vector product, can
be efficiently performed by means of the fast Fourier transform
exploiting the structure of the involved matrix. We compare the
performance in terms of accuracy and efficiency of four algorithms:
the classical SVD algorithm based on the QR decomposition, the
Lanczos algorithm, the Lanczos algorithm with partial reorthogo-
nalization, and the implicitly restarted Lanczos algorithm. Exten-
sive simulation studies show that the latter two algorithms perform
best. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Parameters of MRS signals provide direct information about
the molecules of the organism under investigation: the frequency
of the spectral components characterizes the identity of the
molecules; the damping factor characterizes the mobility of the
molecules, and the amplitude is directly proportional to the num-
ber of molecules. Accurate and efficient quantitation of MRS
signals is the essential step before converting the estimated sig-
nal parameters into biochemical quantities (concentration, pH).
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A variety of advanced techniques based on a time–domain
model function have been developed.

The function often used to model the N measured data points
of a MRS signal is the sum of K exponentially damped complex
sinusoids,

yn = y̆n + en =
K∑

k=1

ake jφk e(−dk+ j2π fk )tn + en

[1.1]
n = 0, 1, . . . , N − 1,

where yn is the nth measured data point, y̆n represents the model
function rather than the actual measurements, j = √−1, ak is
the amplitude, φk the phase, dk the damping factor and fk the
frequency of the kth sinusoid (k = 1, 2, . . . , K ), K is the number
of the sinusoids, tn = n�t + t0 with �t the sampling interval, t0
the time between the effective time origin and the first data point
to be included in the analysis, and en is complex white noise with
a circular Gaussian distribution.

In this paper we consider time–domain estimation methods
which belong to the class of the so-called blackbox methods.
A recent overview is given in (11). Their computationally most
intensive part is the computation of the singular value decom-
position (SVD) of a Hankel matrix. To reduce the needed com-
putational time without affecting the accuracy of the parame-
ters of interest, algorithms based on the Lanczos method are
suitable. In fact, the main computation at each step, a matrix–
vector product, can be efficiently performed by means of the
fast Fourier transform exploiting the structure of the involved
matrix.

The paper is organized as follows. In Section 2 the subspace-
based parameter estimation method HSVD is presented.

In Section 3 four different algorithms for computing the SVD
of a Hankel matrix are considered and, then, four HSVD-based
methods are obtained:

• QR, the classical method based on the QR decomposition;
• HLSVD, the method based on the Lanczos algorithm;
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• PRO, the method based on the Lanczos algorithm with par-
tial reorthogonalization;

• IRL, the method based on the implicitly restarted Lanczos
algorithm.

In Sections 4 and 5 extensive simulation studies are described
and the performances of the four methods are compared in terms
of accuracy and efficiency. More precisely, in Section 4 we com-
pare the computational efficiency and in Section 5 the statistical
accuracy of these four methods. Finally, in Section 6 we formu-
late the main conclusions.

2. THE SUBSPACE-BASED PARAMETER
ESTIMATION METHOD HSVD

HSVD is a subspace-based parameter estimation method in
which the noisy signal is arranged in a Hankel matrix H (1). Its
SVD allows computation of a “signal” subspace and a “noise”
subspace. In fact, if H is constructed from a noiseless time–
domain signal, the data matrix H has rank exactly equal to K ,
the number of exponentials that models the underlying signal.
Due to the presence of the noise, H becomes a full-rank matrix.
However, as long as the signal-to-noise ratio (SNR) of the signal
is not too low, one can still define the “numerical” rank being
approximately equal to K . Then, the “signal” subspace is found
by truncating the SVD of the matrix H to rank K .

The method HSVD is described in the following steps:

• Step 1. We arrange the N data points defined in [1.1] in a
Hankel matrix H of dimensions L × M , with N = L + M − 1:

H =




y0 y1 · · · yM−1

y1 y2 · · · yM
...

...
...

...
yL−1 yL−2 · · · yN−1


 . [2.2]

• Step 2. We compute the SVD of the Hankel matrix H ,

HL×M = UL×L�L×M V H
M×M ,

where � = diag (σ1, σ2, . . . , σq ), σ1 ≥ σ2 ≥ · · · ≥ σq , q =
min(L , M), U H U = UU H = I , and V H V = V V H = I contain
respectively the left and right singular vectors, the superscript
H denotes the Hermitian conjugate. We truncate H to a matrix
HK of rank K ,

HK = UK �K V H
K [2.3]

where UK and VK are the first K columns of U and V , and �K

is the K × K upper-left submatrix of �.
• Step 3. We compute the least–squares (LS) solution E of

the following overdetermined set of equations,
V (t)
K E H ≈ V (b)

K
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where V (b)
K and V (t)

K are derived from VK by deleting its first and
last row, respectively.

• Step 4. The K eigenvalues of E yield the signal pole es-
timates

ẑk = e(−d̂k+ j2π f̂ k )�t k = 1, . . . , K ,

from which estimates for f̂ k and d̂k are found.
• Step 5. Filling in the estimated frequencies f̂ k and damp-

ing factors d̂k into the model equation [1.1] yields the set of
equations:

yn ≈
K∑

k=1

cke(−d̂k+ j2π f̂ k )tn n = 0, 1, . . . , N − 1.

From its least-squares solution ĉk = âke j φ̂k , we find âk and φ̂k ,
the estimated amplitudes and phases.

The most time-consuming step of HSVD is the SVD of the
matrix H , i.e., Step 2. In the next section we will briefly describe
four different algorithms which compute the SVD.

3. THE SVD OF A HANKEL MATRIX

3.1. The Golub–Reinsch Algorithm

Various algorithms are available for computing the SVD of
a matrix. The most reliable algorithm for dense matrices is due
to Golub and Reinsch (3) and it is available in LAPACK (4). In
this paper we refer to the HSVD-based method based on this
algorithm as QR.

The Golub–Reinsch method computes the full SVD in a reli-
able way and takes approximately 2L M2 + 4M3 complex multi-
plications for a L × M matrix. However, when only the computa-
tion of a few largest singular values and corresponding singular
vectors is needed, the method is computationally too expen-
sive. Moreover, it does not exploit the particular structure of the
Hankel matrix H .

3.2. The Lanczos Algorithm

An efficient tool for computing the SVD of large and struc-
tured or sparse matrices is the Lanczos bidiagonalization (5).
Given the rectangular L × M matrix H , the algorithm computes
a sequence of vectors (Lanczos vectors) u j ∈ C

L and v j ∈ C
M ,

where C is the set of complex numbers, and scalars α j and β j

for j = 0, 1, . . . . as follows: Choose a starting vector p0 ∈ C
L ,

p0 �= 0 and let β1 = ‖p0‖2, u1 = p0/β1 and v0 ≡ 0

for j = 0, 1, . . . .

r j = AH u j − β jv j−1

α j = ‖r j‖2

v j = r j/α j

p j = Av j − α j u j
u j+1 = p j/β j+1

end
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After k steps, the lower bidiagonal matrix Bk is generated

Bk =




α1

β2 α2

β2
. . .
. . . αk

βk+1




. [3.4]

In exact arithmetic the Lanczos vectors are orthonormal such that
Uk+1 = [u1, u2, . . . , uk+1] ∈ C

L×(k+1), Vk = [v1, v2, . . . , vk] ∈
C

M×k , U H
k+1Uk+1 = Ik+1, and V H

k Vk = Ik , where Il is the l × l
identity matrix. By construction, the columns of Uk+1 and Vk

satisfy the recurrences:

α jv j = AH u j − β jv j−1 and β j+1u j+1 = Av j − α j u j .

We will refer to the columns of Uk+1 as left Lanczos vectors and
the columns of Vk as right Lanczos vectors.

At each step of the Lanczos algorithm, two matrix–vector
products, AH ui and Avi , are performed. Taking into account
the Hankel structure of the involved matrix H , this can be done
in O((L + M) × log2(L + M)) by means of the FFT, rather than
in O(L M). In exact arithmetic the singular values of Bk con-
verge monotonically to those of H . Moreover, the largest and
the smallest ones converge first (2). When the Lanczos bidi-
agonalization is carried out in finite precision arithmetic, error
vectors accounting for the rounding errors at the j th step occur in
the previous recurrence relations, and the orthogonality among
the left and right Lanczos vectors is gradually lost. Moreover,
multiple copies of the same singular values can arise.

A popular method called HLSVD, described in (9) and imple-
mented in the freely available software package MRUI (http://
www.mrui.uab.es/mrui/mruiHomePage.html), is based on a way
to eliminate the extra copies of converged singular values.

More efficient algorithms exist and are mainly based on work
by Paige (8), who carried out a thorough error analysis of the
Lanczos algorithm and managed to find out when and where the
loss of orthogonality takes place.

Among these algorithms there is PRO. Its central idea is that
the level of orthogonality among the Lanczos vectors satisfies
a recurrence relation which can be derived from the recurrence
relations in finite precision arithmetic. These recurrences can be
used as a practical tool for computing estimates of the level of or-
thogonality in an efficient way, and this information can be used
to decide when to reorthogonalize and which Lanczos vectors
need to be included in the reorthogonalization (10). A reliable
implementation of this method is available in PROPACK (6).

There is another way to maintain orthogonality: to limit the
size of the basis set and use restarting schemes.

Restarting means replacing the starting vector with an

“improved” starting vector and computing a new Lanczos fac-
torization with the new vector. The implicitly restarted Lanczos
CATIONS

algorithm, IRL, is a technique which combines the implicitly
shifted QR scheme (5) with a k-step Lanczos factorization, ob-
taining a truncated form of the implicitly shifted QR iteration.
The numerical difficulties and storage problems normally asso-
ciated with the Lanczos process are avoided. A reliable imple-
mentation of this method is included in ARPACK (7).

4. COMPARISON IN COMPUTATIONAL EFFICIENCY

We consider a simulated signal derived from an in vivo 31P
spectrum measured in the human brain and consisting of 256
complex data points and 11 exponentials, as defined in (12).
Figure 1 shows the spectrum of the simulated signal. We consider
Eq. [1.1] with ak , dk , fk , and φk , k = 1, . . . , 11, known and
perturb the signal by adding complex white noise with a circular
Gaussian distribution with standard deviation σ . The SNR for
each peak is measured in decibels (dB) and defined as

SNR peak k ≡ 20 log

(
ak

σ

)
. [4.5]

A low, intermediate, and high noise level are used (σ = 5, 15,
25, which corresponds to a SNR of 29.5, 20, and 15.6 dB for the
middle peak of β −ATP). Our goal is to reconstruct the param-
eters ak , dk , fk , and φk , k = 1, . . . , 11, characterizing the signal
yn , and to compare the execution time in seconds when com-
puting the first 11 singular values and vectors with the Lanczos
methods PRO, the complex version of the corresponding rou-
tine available in PROPACK (6), HLSVD, and IRL. The com-
putations are carried out on a PC with Pentium Intel 850 MHz
in the Linux environment, in fortran 77 with machine preci-
sion ω ≈ 2.22 × 10−16, with the exception of HLSVD, which is
FIG. 1. Real part of the spectrum of the simulated 31P MRS signal, obtained
for SNR = 20.
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TABLE 1
Mean Value of the Computational Times for 50 Runs

Length (signal) = 256

SNR PRO HLSVD IRL

29.5 0.0330 0.0470 0.0451
20 0.0492 0.0668 0.0578
15.6 0.0878 0.1496 0.1127

Length (signal) = 512

SNR PRO HLSVD IRL

29.5 0.0584 0.0886 0.0683
20 0.1220 0.1612 0.1498
15.6 0.2168 0.2990 0.2581

Note. Above: length (signal) = 256. Below: length (signal) = 512.

partly implemented in single precision. The latter code is very
frequently used for water removal in the NMR spectra.

In Table 1 CPU times are reported for the simulated signal
when considering 256 and 512 data points. We can see that PRO
is clearly the fastest algorithm.

5. COMPARISON IN STATISTICAL ACCURACY

In this section we apply the four HSVD-based methods QR,
HLSVD, PRO, and IRL to filter out the water signal in 1H spec-
tra. We illustrate their performances in terms of statistical accu-
racy via computer simulation studies. More precisely, we focus

on the amplitude estimates of the metabolite signals after water fr , which defines a so-called water region [− fr , fr ].

removal, obtained using the four methods, and compare the qual-
ity of these estimates. The quality is measured as the relative root

2. HSVD-based methods are used to model the original signal
by a sum of K exponentially damped complex-valued sinusoids.
FIG. 2. Left: Real part of the spectrum of the noisy 1H MRS signal containin
estimates as a function of the SNR for Peak4 (But9) obtained for K = 12.
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mean squared error (RRMSE) in percentage,

RRMSE peak k ≡ 100

√√√√ 1

L

L∑
l=1

(
ak − ãl

k

)2

a2
k

, [5.6]

where L is the number of simulation runs and ãl
k denotes the

estimate of ak obtained in simulation run l. The RRMSE is
compared with the relative Cramer–Rao lower bound (CRB).
The CRB indicates the best possible accuracy of an estimate
among all unbiased estimators.

5.1. HSVD for Solvent Suppression

The 1H spectrum contains the signal contribution of the wa-
ter which can have a magnitude 103 to 104 larger than the
magnitude of the metabolites of interest. A preprocessing step
is necessary to remove the unwanted water contribution and
it is obvious that it should influence the final parameter es-
timates of the metabolites of interest as little as possible and
have a low computational complexity. HSVD provides a math-
ematical fit of the data by a sum of exponentially damped
complex-valued sinusoids. Hence it can be used to approxi-
mate the complicated features of the water resonance, including
its large tails. The fitted water region is subsequently subtracted
from the original signal. We investigate the water suppression
abilities of the four HSVD-based methods in terms of accuracy.
We use the following scheme to process proton spectra:

1. The user specifies the model order K and a cutoff frequency
g the water peak obtained for SNR = 15. Right: CRB and RRMSE of amplitude
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TABLE 2
RRMSE Results of AMARES after Preprocessing by PRO and

HLSVD Methods for Peak4 (But9), Obtained for the Model Order
Values K = 10, K = 11, and K = 12

PRO HLSVD PRO HLSVD PRO HLSVD
SNR (K = 10) (K = 10) (K = 11) (K = 11) (K = 12) (K = 12)

0 17.132 17.140 17.154 17.168 17.151 17.164
5 9.4755 9.4761 9.4634 ∗ ∗ ∗ ∗ ∗ 9.4329 9.4139

10 5.4277 5.4533 5.3442 5.3444 5.3819 5.4936
15 3.1248 3.1246 3.0180 3.0186 3.0188 ∗ ∗ ∗ ∗ ∗
20 1.8425 1.8420 1.6958 1.6959 1.6959 ∗ ∗ ∗ ∗ ∗
25 1.1475 1.1467 0.95144 0.95147 0.95123 ∗ ∗ ∗ ∗ ∗
30 0.79215 0.79112 0.53493 0.60617 0.53365 ∗ ∗ ∗ ∗ ∗

3. The peaks with frequencies belonging to the user-defined
water region are used to reconstruct the water peak, after which
the reconstructed water signal is subtracted from the original
signal.

4. The residual signal is quantified with AMARES, which
minimizes the difference between the nonlinear model function
and the data.

Since experimental signals contain errors introduced by fac-
tors such as unknown lineshape, data acquisition errors, and
eddy currents, all inevitably present in in vivo experiments, we
use simulated signals (see Fig. 2) to evaluate the performance
of the proposed quantification scheme. The cutoff frequency is
chosen equal to 35 Hz and the parameters of the seven peaks
used to reconstruct the water resonance and of the five metabo-
lite peaks can be found in (13). This implies that the correct
order of the “signal” subspace is equal to 12. The added com-
plex noise is white and circular Gaussian-distributed. The noise
standard deviation σ is varied to simulate a number of SNRs.

In Fig. 2 the magnitude spectrum of the simulated signal is
displayed (left) and the RRMSE results obtained from 400 sim-
ulation runs are compared with the CRB for the amplitude esti-
mates of peak 4 (But9) (right) when considering the exact model
order K = 12. We omit the estimation results for the other peaks
because they are very similar. First of all, QR, PRO, and IRL
perform in the same way and, above all, they perform in an ac-
curate way. Moreover, we have to note that the RRMSE results

TABLE 3
Mean Value of the Computational Times for 50 Runs

Obtained for K = 12

SNR PRO (K = 12) HLSVD (K = 12)

0 0.3622 0.6096
5 0.3884 0.6744

10 0.4050 0.7522
15 0.3582 0.7730
20 0.3246 0.8082

25 0.2624 0.7100
30 0.2284 0.5428
ICATIONS

obtained by HLSVD have not been plotted. The reason of such a
choice is that when we consider SNR values greater or equal to
15, HLSVD sometimes fails in computing parameter estimates,
thereby yielding too large values of the amplitude RRMSE. For
SNR values lower than 15, HLSVD’s behavior is comparable to
the behavior of the other methods (see Table 2, K = 12).

The mean values on 50 runs of the execution times in
seconds are also reported (see Table 3) when computing the first
12 singular values with PRO and HLSVD. PRO is faster and,
moreover, more accurate than HLSVD.

In Table 2 RRMSE results for all methods have been displayed
when considering different model order values: K = 10, K = 11,
and K = 12. The results clearly show that HLSVD runs into
problems if the model order is exactly estimated (K = 12); the
failures rarely occur when the model order is approximately esti-
mated (K = 11) and disappear if it is underestimated (K = 10).
Then, we can conclude that HLSVD failure occurs when the
model order is exact or overestimated. In case of underestima-
tion, which is usually the case in practice when water removal
is performed by using HLSVD, failures are unlikely to occur.

5.2. HSVD Accuracy Aspects

We examined several simulation runs in which HLSVD fails
and noted that the problem arises in Step 2 of the HLSVD
method. More precisely, checking the singular values computed
by the algorithm, we can observe the presence of more copies of
the same singular value and, consequently, the same number of
copies of the corresponding right singular vectors in the matrix
VK . This implies that the LS solution E in Step 3 has deter-
minant equal to 0, i.e., at least one of its eigenvalues is equal
to 0. In Step 4 of HSVD, we extract frquency and damping
factor estimates from the eigenvalues of E , the so-called sig-
nal poles. More precisely, if the kth complex signal pole is
indicated as zk , we have: fk = imag(log(zk))/2π�t and dk =
−real(log(zk))/�t , where the expression log(zk) can be evalu-
ated only for zk �= 0. In order to overcome HLSVD failure, we
tried to convert the code to double precision. In fact, as already
specified in Section 4, HLSVD code is partly implemented in
single precision. Unfortunately, also after replacing the single
precision, the code sometimes works and sometimes fails. In
our investigation we noted that the code actually includes a pro-
cedure to eliminate extra copies of converged singular values:
the Kats–van der Vorst procedure, based on some eigenvalues’
properties and, in particular, on the “interlacing theorem” (2).
This procedure avoids the reorthogonalization, but it is not ac-
curate enough to circumvent the numerical problems due to the
loss of orthogonality among the Lanczos vectors. We can con-
clude that HLSVD failure is due to its inability to detect only
one copy of the same singular value. As noted in Section 5.1,
this problem only occurs at large SNR values when the model

order is exact or overestimated, which is rarely the case in NMR
practice.
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6. CONCLUSIONS

The HLSVD method is a blackbox method which computes
the parameters of MRS signals and is very frequently used in
NMR spectroscopy for water suppression. HLSVD requires the
computation of the truncated singular value decomposition of
a Hankel matrix H [2.3]. In this paper we have proposed two
methods, PRO and IRL, to compute the truncated singular value
decomposition of a Hankel matrix [2.3], based on the Lanczos
method with partial reorthogonalization or complete reorthogo-
nalization on a small subspace. Via extensive simulation studies,
we have compared their performance in terms of accuracy and
efficiency with the currently used HLSVD method. Our stud-
ies show that PRO and IRL outperform HLSVD in terms of
computational efficiency and numerical reliability.2
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